

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

4-Cyanopyridinium dihydrogen phosphate-isonicotinonitrile-phosphoric acid (1/1/1)

Ying-Chun Wang

College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China Correspondence e-mail: wangyc33@yahoo.com.cn

Received 3 May 2012; accepted 7 May 2012

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.002 Å; *R* factor = 0.030; w*R* factor = 0.096; data-to-parameter ratio = 16.2.

The asymmetric unit of the title compound, $C_6H_5N_2^+$. $H_2PO_4^- \cdot C_6H_4N_2 \cdot H_3PO_4$, contains one 4-cyanopyridinium cation, one $H_2PO_4^{-}$ anion, one independent isonicotinonitrile molecule and one independent H₃PO₄ molecule. The dihedral angle between the mean planes of the separate protonated and unprotonated pyridine rings is $9.93 (8)^{\circ}$. In the crystal, N-H···O and O-H···N hydrogen bonds and weak C- $H \cdots O$ and $C - H \cdots N$ intermolecular interactions connect the organic molecules into a two-dimensional network parallel to the *ac* plane. $O-H \cdots O$ hydrogen-bonding interactions involving the $H_2PO_4^-$ anions and H_3PO_4 molecules provide additional support from the inorganic groups Weak π - π stacking interactions between the pyridine rings of neighbouring organic molecules [centroid-centroid distances = 3.711 (4) and 3.784 (2) Å] further link the layers into a threedimensional network.

Related literature

For the properties of related compounds, see: Chen *et al.* (2001); Huang *et al.* (1999); Zhang *et al.* (2001). For related structures, see: Wang *et al.* (2002); Xue *et al.* (2002); Ye *et al.* (2008).

Experimental

Crystal data

 $\begin{array}{l} C_{6}H_{5}N_{2}^{+}\cdot H_{2}O_{4}P^{-}\cdot C_{6}H_{4}N_{2}\cdot H_{3}O_{4}P \\ M_{r} = 404.21 \\ \text{Triclinic, } P\overline{1} \\ a = 8.1040 \ (5) \ \text{\AA} \\ b = 8.8872 \ (9) \ \text{\AA} \\ c = 12.1606 \ (8) \ \text{\AA} \\ \alpha = 81.491 \ (1)^{\circ} \\ \beta = 82.009 \ (1)^{\circ} \end{array}$

Data collection

Rigaku Mercury2 diffractometer Absorption correction: multi-scan (*CrystalClear*; Rigaku, 2005) $T_{\rm min} = 0.910, T_{\rm max} = 1.000$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.030$ $wR(F^2) = 0.096$ S = 1.143798 reflections 235 parameters $\gamma = 79.133 (1)^{\circ}$ $V = 845.07 (11) \text{ Å}^3$ Z = 2Mo K\alpha radiation $\mu = 0.31 \text{ mm}^{-1}$ T = 173 K $0.10 \times 0.05 \times 0.05 \text{ mm}$

8963 measured reflections 3798 independent reflections 3306 reflections with $I > 2\sigma(I)$ $R_{int} = 0.023$

6 restraints H-atom parameters constrained $\begin{aligned} &\Delta\rho_{max}=0.34 \text{ e } \text{\AA}^{-3} \\ &\Delta\rho_{min}=-0.40 \text{ e } \text{\AA}^{-3} \end{aligned}$

 Table 1

 Hydrogen-bond geometry (Å, °).

$D-H\cdots A$ $D-H$ $H\cdots A$ $D\cdots A$ $D-H\cdots A$ $O2-H2\cdots O5^i$ 0.82 1.75 2.5576 (14) 169 $O4-H4\cdots O3^{ii}$ 0.82 1.74 2.5611 (14) 176 $O6-H6\cdots N1^{iii}$ 0.82 1.74 2.5611 (14) 176 $O7-H7\cdots O1^{iv}$ 0.82 1.76 2.6749 (17) 178 $O7-H7\cdots O1^{iv}$ 0.82 1.70 2.5150 (15) 177 $O8-H8\cdots O3^{ii}$ 0.82 1.76 2.5795 (15) 177 $O3-H3\cdots O1$ 0.90 1.77 2.6466 (16) 162 $C1-H1A\cdots O2^v$ 0.95 2.44 3.2549 (19) 144 $C8-H8A\cdots N2^{vi}$ 0.95 2.31 3.1631 (19) 149 $C1-H10A\cdots O7^{vii}$ 0.95 2.52 3.232 (10) 144					
$O2-H2O5^{i}$ 0.82 1.75 2.5576 (14) 169 $O4-H4O3^{ii}$ 0.82 1.74 2.5611 (14) 176 $O6-H6N1^{iii}$ 0.82 1.74 2.5611 (14) 176 $O6-H6N1^{iii}$ 0.82 1.86 2.6749 (17) 178 $O7-H7O1^{iv}$ 0.82 1.70 2.5150 (15) 173 $O8-H8O3^{ii}$ 0.82 1.76 2.5795 (15) 177 $N3-H3O1$ 0.90 1.77 2.6466 (16) 162 $C1-H1AO2^{v}$ 0.95 2.44 3.2549 (19) 144 $C8-H8AN2^{vi}$ 0.95 2.51 3.273 (2) 138 $C10-H10AO7^{vii}$ 0.95 2.31 3.1631 (19) 144	$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdots A$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O2−H2···O5 ⁱ	0.82	1.75	2.5576 (14)	169
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O4−H4···O3 ⁱⁱ	0.82	1.74	2.5611 (14)	176
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O6−H6···N1 ⁱⁱⁱ	0.82	1.86	2.6749 (17)	178
$O8-H8\cdots O3^{ii}$ 0.82 1.76 2.5795 (15) 177 $N3-H3\cdots O1$ 0.90 1.77 2.6466 (16) 162 $C1-H1A\cdots O2^v$ 0.95 2.44 3.2549 (19) 144 $C8-H8A\cdots N2^{vi}$ 0.95 2.51 3.273 (2) 138 $C10-H10A\cdots O7^{vii}$ 0.95 2.31 3.1631 (19) 144	$O7 - H7 \cdot \cdot \cdot O1^{iv}$	0.82	1.70	2.5150 (15)	173
N3-H3O1 0.90 1.77 2.6466 (16) 162 C1-H1 $AO2^v$ 0.95 2.44 3.2549 (19) 144 C8-H8 $AN2^{vi}$ 0.95 2.51 3.273 (2) 138 C10-H10 $AO7^{vii}$ 0.95 2.31 3.1631 (19) 149 C10-H10 $AO7^{vii}$ 0.95 2.52 3.232 (10) 144	O8−H8···O3 ⁱⁱ	0.82	1.76	2.5795 (15)	177
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N3−H3···O1	0.90	1.77	2.6466 (16)	162
C8-H8 $A \cdots N2^{vi}$ 0.95 2.51 3.273 (2) 138 C10-H10 $A \cdots O7^{vii}$ 0.95 2.31 3.1631 (19) 149 C11 <h114< td=""> O1^v 0.95 2.52 3.2321 (10) 144</h114<>	$C1 - H1A \cdots O2^{v}$	0.95	2.44	3.2549 (19)	144
C10-H10 A O7 ^{vii} 0.95 2.31 3.1631 (19) 149 C11 H114 O1 ^v 0.95 2.52 3.3231 (10) 144	$C8 - H8A \cdot \cdot \cdot N2^{vi}$	0.95	2.51	3.273 (2)	138
C11 H114 O1 ^V 0.05 2.52 2.2221 (10) 144	$C10-H10A\cdots O7^{vii}$	0.95	2.31	3.1631 (19)	149
$C_{11} = 1111A \cdots O_{1} \qquad 0.75 \qquad 2.52 \qquad 5.5521 (19) \qquad 144$	$C11 - H11A \cdots O1^{v}$	0.95	2.52	3.3321 (19)	144

Symmetry codes: (i) -x + 1, -y + 1, -z + 2; (ii) -x, -y + 1, -z + 2; (iii) x - 1, y + 1, z; (iv) x, y + 1, z; (v) -x + 1, -y, -z + 2; (vi) -x + 1, -y + 1, -z + 1; (vii) x + 1, y - 1, z.

Data collection: *CrystalClear* (Rigaku, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This work was supported by a start-up grant from Southeast University, China.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JJ2136).

References

- Chen, Z.-F., Li, B.-Q., Xie, Y.-R., Xiong, R.-G., You, X.-Z. & Feng, X.-L. (2001). Inorg. Chem. Commun. 4, 346–349.
- Huang, S.-P.-D., Xiong, R.-G., Han, J.-D. & Weiner, B. R. (1999). Inorg. Chim. Acta, 294, 95–98.

Rigaku (2005). *CrystalClear*. Rigaku Corporation, Tokyo, Japan. Sheldrick, G. M. (2008). *Acta Cryst.* A**64**, 112–122.

Acta Cryst. (2012). E68, o1693-o1694

- Wang, L.-Z., Wang, X.-S., Li, Y.-H., Bai, Z.-P., Xiong, R.-G., Xiong, M. & Li, G.-W. (2002). Chin. J. Inorg. Chem. 18, 1191–1194.
- Xue, X., Abrahams, B. F., Xiong, R.-G. & You, X.-Z. (2002). Aust. J. Chem. 55, 495–497.
- Ye, Q., Fu, D.-W., Hang, T., Xiong, R.-G., Chan, P. W. H. & Huang, S. P. D. (2008). *Inorg. Chem.* 47, 772–774.
- Zhang, J., Xiong, R.-G., Chen, X.-T., Che, C.-M., Xue, Z.-L. & You, X.-Z. (2001). Organometallics, **20**, 4118–4121.

supplementary materials

Acta Cryst. (2012). E68, o1693-o1694 [doi:10.1107/S1600536812020430]

4-Cyanopyridinium dihydrogen phosphate-isonicotinonitrile-phosphoric acid (1/1/1)

Ying-Chun Wang

Comment

Simple organic salts containing strong intrermolecular H-bonds have attracted attention as materials which display ferroelectric-paraelectric phase transitions (Chen *et al.*, 2001; Huang, *et al.* 1999; Zhang, *et al.* 2001). In an effort to obtain phase transition crystals of organic salts, various organic molecules have been studied with a series of new crystal materials (Wang *et al.*, 2002; Xue, *et al.* 2002; Ye *et al.*, 2008). Herewith, we present the synthesis and crystal structure of the title compound, $C_6H_5N_2^+$. $H_2PO_4^-$. $C_6H_4N_2$. H_3PO_4 , (I).

The asymmetric unit of (I) is comprised of one 4-cyanopyridinium cation, one $H_2PO_4^-$ anion, one independent isonicotinonitrile molecule and one independent H_3PO_4 molecule (Fig. 1). The two separate pyridine rings in the asymmetric unit are almost planar with the largest deviation from the least-squares plane being 0.001 (1) Å and 0.003 (1) Å, respectively. The dihedral angle between the mean planes of the two separate pyridine rings is 9.93 (8)°. Bond lengths and angles in each of these units are in normal ranges.

In the crystal N—H···O and O—H···N hydrogen bonds and weak C—H···O and C—H···N intermolecular interactions bring the organic molecules into a 2D network (Fig. 2). Also, O—H···O hydrogen bonding interactions involving the H₂PO₄⁻ anions and H₃PO₄ molecules provide additional support for the 2D network from the inorganic groups (Table 1, Fig. 3). In addition, weak π - π stacking interactions between the pyridine rings of neighbouring organic molecules further link the layers into a 3D network (Cg1···Cg2 = 3.711 (4) Å and Cg1···Cg2 = 3.784 (2) Å, where Cg1 and Cg2 are the centroids of the pyridine rings, N1/C1/C2/C3/C4/C5 and N3/C7/C8/C9/C10/C11, respectively).

Experimental

Isonicotinonitrile (10 mmol and stirred at 60°C for 2 h. The precipitate was then filtrated. Colourless crystals suitable for X-ray diffraction were obtained by slow evaporation of the solution.

Refinement

H2, H3, H4, H6 and H8 were refined freely. In the last stages of the refinement these atoms were restrained with N3—H3 = 0.90 (2)Å and O2—H2, O4—H4, O6–H6, O8—H8 all = 0.82 (2)Å with $U_{iso}(H) = 1.2U_{eq}(N)$ and $U_{iso}(H)=1.5U_{eq}(O)$. All the remaining H atoms attached to C atoms were placed in calculated positions and then refined using the riding model with C—H lengths of 0.95 Å (CH). The isotropic displcement parameters for these atoms were set to 1.2 (CH) times U_{eq} of the parent atom.

Computing details

Data collection: *CrystalClear* (Rigaku, 2005); cell refinement: *CrystalClear* (Rigaku, 2005); data reduction: *CrystalClear* (Rigaku, 2005); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure:

SHELXL97 (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

Figure 1

Molecular structure of the title compound showing the atom labeling scheme and 50% probability displacement ellipsoids for one cation-anion unit and bimolecular unit in the asymmetric unit.

Figure 2

Crystal packing of the title compound viewed along the *b* axis showing O—H···O, O—H···N, hydrogen bonds (dotted lines), weak C—H···O, C—H···N intermolecular interactions (dotted lines) and weak π — π stacking interactions (dashed lines).

Figure 3

Crystal packing of the title compound viewed along the *c* axis showing the O—H…O hydrogen bonds (dotted line).

4-Cyanopyridinium dihydrogen phosphate-isonicotinonitrile-phosphoric acid (1/1/1)

Z = 2

F(000) = 416

 $\theta = 2.6 - 27.5^{\circ}$

 $\mu = 0.31 \text{ mm}^{-1}$

Block, colorless

 $0.10 \times 0.05 \times 0.05$ mm

8963 measured reflections

 $\theta_{\rm max} = 27.5^{\circ}, \ \theta_{\rm min} = 2.6^{\circ}$

3798 independent reflections

3306 reflections with $I > 2\sigma(I)$

T = 173 K

 $R_{\rm int} = 0.023$

 $h = -10 \rightarrow 10$

 $k = -11 \rightarrow 11$ $l = -15 \rightarrow 15$

 $D_{\rm x} = 1.589 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 3798 reflections

Crystal data

 $\begin{array}{l} C_{6}H_{5}N_{2}^{+} \cdot H_{2}O_{4}P^{-} \cdot C_{6}H_{4}N_{2} \cdot H_{3}O_{4}P \\ M_{r} = 404.21 \\ \text{Triclinic, } P1 \\ \text{Hall symbol: -P 1} \\ a = 8.1040 \ (5) \ \text{\AA} \\ b = 8.8872 \ (9) \ \text{\AA} \\ c = 12.1606 \ (8) \ \text{\AA} \\ a = 81.491 \ (1)^{\circ} \\ \beta = 82.009 \ (1)^{\circ} \\ \gamma = 79.133 \ (1)^{\circ} \\ V = 845.07 \ (11) \ \text{\AA}^{3} \end{array}$

Data collection

Rigaku Mercury2 diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 13.6612 pixels mm⁻¹ CCD profile fitting scans Absorption correction: multi-scan (*CrystalClear*; Rigaku, 2005) $T_{min} = 0.910, T_{max} = 1.000$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.030$	Hydrogen site location: inferred from
$wR(F^2) = 0.096$	neighbouring sites
S = 1.14	H-atom parameters constrained
3798 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0597P)^2]$
235 parameters	where $P = (F_0^2 + 2F_c^2)/3$
6 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.34 \text{ e} \text{ Å}^{-3}$
direct methods	$\Delta \rho_{\min} = -0.40 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
N1	1.02100 (16)	0.12068 (15)	0.59294 (11)	0.0141 (3)
N2	0.39938 (18)	0.32104 (18)	0.46853 (13)	0.0273 (4)
C4	0.83067 (19)	0.30110 (18)	0.48280 (13)	0.0158 (3)

H4A	0.8118	0.3903	0.4294	0.019*	
C5	0.98861 (19)	0.24689 (18)	0.51769 (13)	0.0155 (3)	
H5A	1.0784	0.3010	0.4873	0.019*	
C6	0.5317 (2)	0.27525 (19)	0.49470 (14)	0.0188 (3)	
C2	0.73050 (19)	0.09074 (18)	0.60593 (13)	0.0152 (3)	
H2A	0.6429	0.0347	0.6378	0.018*	
C3	0.69979 (19)	0.22094 (18)	0.52833 (13)	0.0142 (3)	
C1	0.89403 (19)	0.04504 (18)	0.63541 (13)	0.0146 (3)	
H1A	0.9166	-0.0442	0.6883	0.018*	
N3	0.50667 (15)	0.28063 (14)	0.85938 (11)	0.0138 (3)	
Н3	0.4049	0.2582	0.8897	0.017*	
N4	1.12529 (17)	0.40818 (17)	0.74487 (12)	0.0216 (3)	
C11	0.63720 (19)	0.18015 (18)	0.89738 (13)	0.0146 (3)	
H11A	0.6178	0.0886	0.9447	0.017*	
C8	0.6851 (2)	0.44610 (18)	0.75916 (13)	0.0158 (3)	
H8A	0.7008	0.5377	0.7107	0.019*	
C9	0.82275 (18)	0.34390 (17)	0.79861 (12)	0.0128 (3)	
C10	0.79957 (19)	0.20896 (18)	0.86819 (13)	0.0149 (3)	
H10A	0.8932	0.1385	0.8949	0.018*	
C7	0.52563 (19)	0.41132 (18)	0.79207 (13)	0.0162 (3)	
H7A	0.4294	0.4798	0.7671	0.019*	
C12	0.9921 (2)	0.37991 (18)	0.76837 (13)	0.0158 (3)	
P1	0.15691 (4)	0.29108 (4)	1.05923 (3)	0.00975 (11)	
01	0.24327 (13)	0.17698 (12)	0.97909 (9)	0.0140 (2)	
O2	0.21239 (13)	0.23350 (12)	1.17856 (9)	0.0145 (2)	
H2	0.3149	0.2034	1.1716	0.022*	
03	-0.03370 (12)	0.32218 (12)	1.06993 (9)	0.0131 (2)	
O4	0.22876 (13)	0.44436 (12)	1.01948 (9)	0.0140 (2)	
H4	0.1635	0.5162	0.9902	0.021*	
P2	0.31115 (5)	0.91637 (4)	0.78249 (3)	0.01113 (11)	
05	0.47632 (13)	0.89331 (13)	0.82709 (9)	0.0184 (3)	
O6	0.32346 (13)	1.01043 (13)	0.66430 (9)	0.0163 (2)	
H6	0.2317	1.0444	0.6412	0.024*	
07	0.16276 (13)	1.00119 (12)	0.85896 (9)	0.0153 (2)	
H7	0.1963	1.0539	0.8984	0.023*	
08	0.24974 (14)	0.76550 (12)	0.76809 (9)	0.0167 (2)	
H8	0.1813	0.7401	0.8206	0.025*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0147 (6)	0.0160 (6)	0.0114 (7)	-0.0017 (5)	-0.0025 (5)	-0.0017 (5)
N2	0.0158 (7)	0.0357 (9)	0.0274 (9)	-0.0039 (6)	-0.0062 (6)	0.0085 (7)
C4	0.0170 (7)	0.0155 (7)	0.0138 (8)	-0.0025 (6)	-0.0025 (6)	0.0015 (6)
C5	0.0148 (7)	0.0173 (8)	0.0143 (8)	-0.0042 (6)	-0.0015 (6)	-0.0006 (6)
C6	0.0162 (8)	0.0215 (8)	0.0173 (8)	-0.0039 (6)	-0.0015 (6)	0.0027 (6)
C2	0.0154 (7)	0.0172 (8)	0.0134 (8)	-0.0046 (6)	-0.0009 (6)	-0.0013 (6)
C3	0.0129 (7)	0.0169 (7)	0.0128 (8)	-0.0006 (6)	-0.0032 (6)	-0.0029 (6)
C1	0.0175 (8)	0.0144 (7)	0.0113 (7)	-0.0017 (6)	-0.0024 (6)	-0.0006 (6)
N3	0.0107 (6)	0.0164 (6)	0.0145 (7)	-0.0030 (5)	0.0010 (5)	-0.0043 (5)

N4	0.0176 (7)	0.0241 (8)	0.0239 (8)	-0.0074 (6)	-0.0024 (6)	-0.0010 (6)
C11	0.0155 (7)	0.0148 (7)	0.0130 (8)	-0.0034 (6)	-0.0005 (6)	-0.0004 (6)
C8	0.0185 (8)	0.0148 (7)	0.0149 (8)	-0.0049 (6)	-0.0039 (6)	0.0000 (6)
C9	0.0131 (7)	0.0159 (7)	0.0111 (7)	-0.0038 (6)	-0.0012 (6)	-0.0057 (6)
C10	0.0131 (7)	0.0147 (7)	0.0160 (8)	0.0004 (6)	-0.0025 (6)	-0.0013 (6)
C7	0.0147 (7)	0.0155 (7)	0.0181 (8)	-0.0001 (6)	-0.0053 (6)	-0.0013 (6)
C12	0.0178 (8)	0.0167 (8)	0.0136 (8)	-0.0044 (6)	-0.0023 (6)	-0.0019 (6)
P1	0.00801 (19)	0.00916 (19)	0.0115 (2)	-0.00048 (14)	-0.00172 (14)	-0.00001 (14)
01	0.0128 (5)	0.0137 (5)	0.0159 (6)	-0.0019 (4)	-0.0008 (4)	-0.0043 (4)
O2	0.0110 (5)	0.0181 (6)	0.0123 (6)	0.0013 (4)	-0.0024 (4)	0.0014 (4)
O3	0.0088 (5)	0.0123 (5)	0.0169 (6)	-0.0009 (4)	-0.0020 (4)	0.0019 (4)
O4	0.0108 (5)	0.0093 (5)	0.0213 (6)	-0.0010 (4)	-0.0052 (4)	0.0021 (4)
P2	0.00841 (19)	0.0120 (2)	0.0126 (2)	-0.00073 (14)	-0.00240 (14)	-0.00054 (15)
O5	0.0098 (5)	0.0251 (6)	0.0198 (6)	0.0011 (4)	-0.0054 (4)	-0.0024 (5)
06	0.0110 (5)	0.0196 (6)	0.0164 (6)	-0.0024 (4)	-0.0037 (4)	0.0049 (4)
O7	0.0109 (5)	0.0162 (5)	0.0206 (6)	-0.0022 (4)	-0.0016 (4)	-0.0082 (4)
08	0.0186 (6)	0.0138 (5)	0.0173 (6)	-0.0051 (4)	0.0047 (4)	-0.0037 (4)

Geometric parameters (Å, °)

N1—C1	1.337 (2)	С8—С9	1.392 (2)
N1—C5	1.3477 (19)	C8—H8A	0.9500
N2—C6	1.144 (2)	C9—C10	1.389 (2)
C4—C5	1.381 (2)	C9—C12	1.453 (2)
C4—C3	1.394 (2)	C10—H10A	0.9500
C4—H4A	0.9500	C7—H7A	0.9500
С5—Н5А	0.9500	P1—O3	1.5077 (10)
C6—C3	1.450 (2)	P101	1.5176 (11)
С2—С3	1.387 (2)	P1—O2	1.5635 (11)
C2—C1	1.391 (2)	P1—O4	1.5666 (11)
C2—H2A	0.9500	O2—H2	0.8195
C1—H1A	0.9500	O4—H4	0.8198
N3—C11	1.3370 (19)	P2—O5	1.4811 (11)
N3—C7	1.339 (2)	P2—O6	1.5526 (11)
N3—H3	0.9008	P2—O8	1.5560 (11)
N4—C12	1.142 (2)	P2—O7	1.5601 (11)
C11—C10	1.376 (2)	O6—H6	0.8196
C11—H11A	0.9500	O7—H7	0.8208
C8—C7	1.377 (2)	O8—H8	0.8198
C1—N1—C5	118.22 (13)	C10—C9—C12	119.62 (14)
C5—C4—C3	117.97 (14)	C8—C9—C12	119.72 (14)
C5—C4—H4A	121.0	C11—C10—C9	118.16 (14)
C3—C4—H4A	121.0	C11—C10—H10A	120.9
N1C5C4	122.96 (14)	C9-C10-H10A	120.9
N1—C5—H5A	118.5	N3—C7—C8	119.76 (14)
C4—C5—H5A	118.5	N3—C7—H7A	120.1
N2—C6—C3	178.62 (18)	С8—С7—Н7А	120.1
C3—C2—C1	117.73 (14)	N4—C12—C9	179.83 (17)
С3—С2—Н2А	121.1	O3—P1—O1	115.74 (6)

C1—C2—H2A	121.1	O3—P1—O2	108.01 (6)
C2—C3—C4	119.98 (14)	O1—P1—O2	109.65 (6)
C2—C3—C6	120.42 (14)	O3—P1—O4	110.60 (6)
C4—C3—C6	119.60 (14)	O1—P1—O4	106.72 (6)
N1—C1—C2	123.16 (14)	O2—P1—O4	105.66 (6)
N1—C1—H1A	118.4	P1—O2—H2	107.9
C2—C1—H1A	118.4	P1—O4—H4	115.8
C11—N3—C7	122.80 (13)	O5—P2—O6	109.29 (6)
C11—N3—H3	113.8	O5—P2—O8	115.10 (6)
C7—N3—H3	123.0	O6—P2—O8	105.90 (6)
N3—C11—C10	120.21 (14)	O5—P2—O7	113.15 (6)
N3—C11—H11A	119.9	O6—P2—O7	109.13 (6)
C10-C11-H11A	119.9	O8—P2—O7	103.84 (6)
С7—С8—С9	118.43 (15)	Р2—О6—Н6	114.0
С7—С8—Н8А	120.8	Р2—О7—Н7	111.9
С9—С8—Н8А	120.8	P2—O8—H8	112.0
С10—С9—С8	120.65 (14)		
C1—N1—C5—C4	0.0 (2)	C7—N3—C11—C10	0.3 (2)
C3—C4—C5—N1	0.2 (2)	C7—C8—C9—C10	0.9 (2)
C1—C2—C3—C4	0.0 (2)	C7—C8—C9—C12	-177.97 (14)
C1—C2—C3—C6	-179.54 (14)	N3-C11-C10-C9	-0.2 (2)
C5—C4—C3—C2	-0.2 (2)	C8—C9—C10—C11	-0.5 (2)
C5—C4—C3—C6	179.34 (14)	C12—C9—C10—C11	178.46 (14)
C5—N1—C1—C2	-0.2 (2)	C11—N3—C7—C8	0.2 (2)
C3—C2—C1—N1	0.2 (2)	C9—C8—C7—N3	-0.8 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H··· <i>A</i>
02—H2…O5 ⁱ	0.82	1.75	2.5576 (14)	169
O4—H4…O3 ⁱⁱ	0.82	1.74	2.5611 (14)	176
O6—H6…N1 ⁱⁱⁱ	0.82	1.86	2.6749 (17)	178
O7—H7···O1 ^{iv}	0.82	1.70	2.5150 (15)	173
O8—H8…O3 ⁱⁱ	0.82	1.76	2.5795 (15)	177
N3—H3…O1	0.90	1.77	2.6466 (16)	162
$C1$ — $H1A$ ··· $O2^{v}$	0.95	2.44	3.2549 (19)	144
C8—H8A····N2 ^{vi}	0.95	2.51	3.273 (2)	138
C10—H10A····O7 ^{vii}	0.95	2.31	3.1631 (19)	149
C11—H11A····O1 ^v	0.95	2.52	3.3321 (19)	144

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+2; (ii) -*x*, -*y*+1, -*z*+2; (iii) *x*-1, *y*+1, *z*; (iv) *x*, *y*+1, *z*; (v) -*x*+1, -*y*, -*z*+2; (vi) -*x*+1, -*y*+1, -*z*+1; (vii) *x*+1, *y*-1, *z*.